
Firebird and PHPServer

November 2005

Topics

 What is LAMP?

 A short history of LAMP and AJAX

 PHP and AJAX in action

 LAMP and Firebird: what can you do with it?

 What’s next?

What is LAMP?

 Definition 1: a stack of four software components
– L inux
– A pache
– M ySQL
– P HP

 Definition 2: an application server based on
– An HTTP server
– Server-side embedded scripting
– A relational database

 And for LAMP/AJAX: an application server based on
– A browser with client-side scripting
– An HTTP server
– Server-side (embedded) scripting
– A relational database

Why is PHPServer important for Firebird?

Tiobe Programming Community Index Estimated developer community
sizes:

– C/C++: 5 mln
– Java: 5 mln
– Delphi/VB: 4 mln
– PHP: 3 mln
– C#/.Net 1 mln

 According to Netcraft, PHP is
being used at:

– 22.4 mln domains
originating from
– 1.3 mln IP addresses

 IT Industry recognizes PHP as an
important technology

– IBM
– Oracle
– Yahoo
– Etc.

Why is PHPServer important for Firebird?

For comparison (Summer '04):
- PHP had 1.2 mln IP’s
- ColdFusion had 80K IP’s
- ASP.NET had 40K IP’s

Topics

 What is LAMP?

 A short history of LAMP and AJAX

 PHP and AJAX in action

 LAMP and Firebird: what can you do with it?

 What’s next?

1992..4: The basics evolve

 The HTTP protocol is extended with the POST
method

 The HTML language is extended with the
<FORM ..> tag

 The web server is extended with the CGI api
specification

 Typical CGI programs are Unix shell scripts or
Perl scripts

 No database typically used!

 First e-Commerce application appears in the first
months of 1995

UNIX

NSCA
web server

shell scripts,
Perl

Mosaic 2
browser

internet

Source: Wikipedia

1995..96: David Hughes invents LAMP

 Davis has an itch to scratch: a universal client for
the Athena network monitoring software

 First uses Postgres95 with a SQL-to-QUEL
preprocessor; this solution is too ‘heavy’

 Then he writes a simple back-end to the
preprocessor, thus creating mSQL, a mini SQL
server

 Invents the embedded ‘Lite’ language to easily
generate html in response to requests

 Releases the code under a restrictive open source
license in April 1996

 mSQL quickly gains traction as a lightweight
database in the emerging Linux world

UNIX

NSCA
Web server

W3-Lite

Netscape
Browser

internet

Source: Wikipedia

mSQL

1997..8: MySQL, PHP/Perl and “LAMP”

 Monty Widenius is a mSQL user but finds
performance lacking (mSQL did not support
indexes)

 MySQL is created: an API and SQL compatible
clone of mSQL, with support for indexes, otherwise
just as basic; license LGPL

 PHP starts as a set of Perl scripts in 1995; it
remains a one man project for several years.
PHP version 3 combines the best elements of Perl
and Lite.

 In the summer of 1998, c't journalist Michael
Kunze is the first to use the acronym “LAMP”

 LAMP becomes a popular technology in Europe

 Linux becomes a popular platform for running
webservers, mainly Apache

UNIX/Linux

Apache

Lite, PHP, Perl

Browser

internet

Source: Wikipedia

mSQL /
MySQL

1999..2004: LAMP becomes mainstream

 Tech publisher O'Reilly notices the popularity of
LAMP in Europe and starts to promote the
concept in the US; ONLamp website started

 PHP gets rewritten twice (PHP4, PHP5) and
becomes the most popular scripting choice

 LAMP programming is much easier/faster than
e.g. J2EE or ASP.Net; Popularity skyrockets

 MySQL changes its license policy. The default
database of PHP becomes SQLite

 Oracle and IBM start supporting PHP as part of
their database offerings

 Virtually every OS supports LAMP: *nix, windows,
OS/400, etc.

 A large pool of open source PHP applications is
developed

OS

webserver

PHP

Browser

internet

Source: Wikipedia

database

“app
 server”

2005: client side processing, AJAX

 After many years of work, browsers are becoming
more standards compliant and powerful

– Fast JavaScript
– Cascading Style Sheets
– Document Object Model
– Asynchroneous HTTP requests

 Google proves that “good enough” user interfaces
can be made using modern browers (Google
maps, GMail)

 “AJAX” becomes next buzzword

 But…
– with increasing power, some of the simplicity

that made LAMP attractive is unfortunately
lost

– IE6 still has relatively slow JavaScript
processing

OS

webserver

PHP

Modern
browser

internet

Source: Wikipedia

database

“app
 server”

Topics

 What is LAMP?

 A short history of LAMP and AJAX

 PHP and AJAX in action

 LAMP and Firebird: what can you do with it?

 What’s next?

PHPServer: a Firebird PHP application server

 PHPServer is a PHP-based application server for
Firebird

 Entirely open source

 Capable, compact, easy, free;
Works 'out-of-the-box'

 4-click GUI install on both Linux and Windows;
identical GUI web server management on both
Linux and Windows

 Advanced webserver-PHP interaction:
– FastCGI call interface
– Webserver manages PHP server
– Persistent database connections
– Persistent sessions

Win / Lin

MyServer

PHP5

Modern
browser

internet

Firebird

Serving a basic page

<html>
<head>
<title>Step 1</title>
</head>
<body>
 <table align="center">
 <tr bgcolor=“#0000ff”>
 <td width="800">Header</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 1</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 2</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 3</td></tr>
 </table>
</body>
</html>

File: “step1.html” Output

Header
Row 1
Row 2
Row 3

Adding some PHP scripting

<html>
<head>
<title>Step 2</title>
</head>
<body>
 <table align="center">
 <tr bgcolor=“#0000ff”>
 <td width="800">Header</td></tr>
 <? for($i=1; $i<4; $i++) {
 echo '<tr bgcolor=“#cccc33”>';
 echo '<td>Row '.$i.'</td></tr>';
 }
 ?>
 </table>
</body>
</html>

File: “step2.php” Output

Header
Row 1
Row 2
Row 3

Accessing Firebird from PHP

 PHPServer has Firebird driver pre-configured: no need to install separately. PHPServer
does not install Firebird itself.

 Simple API
– fbird_connect: opens a connection to the database
– fbird_query: executes a query, returning a result set object
– fbird_fetch_row: fetch the current row, returning array of fields
– fbird_free_result: clean up the result set object
– fbird_close: close the connection

 Possibility to keep database connection open between successive page loads
– Faster response
– Reduce load on server
– Use 'fbird_pconnect' instead of 'fbird_connect' to make connection persistent

Accessing Firebird from PHP

<html>
<head>
<title>Step 3</title>
</head>
<body>
 <table align="center">
 <tr bgcolor=“#0000ff”>
 <td width="800">Header</td></tr>
 <? $db = fbird_connect("localhost:c:\phpdemo.fdb",
 "sysdba","masterkey");
 $rs = fbird_query($db, "select * from demo");
 while($rw = fbird_fetch_row($rs)) {
 echo '<tr bgcolor=“#cccc33”>';
 echo '<td>'.$rw[0].'</td></tr>';
 }
 fbird_free_result($rs);
 fbird_close($db);
 ?>
 </table>
</body>
</html>

File: “step3.php” Output

Header
Result row a
Result row b
Result row c

Adding some AJAX

 Modern browsers contain the HTTPRequest object, which makes it possible to request data
from the server without reloading the main page

 Simple API
– open: set the request URL and method (get, post)
– onreadystatechange: set the callback function to process answer
– send: send the request to the server
– readyState: get the status of the request (pending, ready, error, etc.)
– responseText: fetch the result

 Typically, the result is assigned to an object already contained on the main page
– <div name=id> tag often appropriate
– Use JavaScript “DOM” to get access to the tag object

Adding some AJAX

<html>
<head>
<title>Step 4</title>
<script language="javascript" type="text/javascript"
 src="./ajaxdemo.js"></script>
</head>
<body>
 <table align="center">
 <tr bgcolor=“#0000ff”>
 <td width="800">

<form name="form_select">
 <select name="order_select"

 onChange="getItems();">
 <option>Ascending</option>
 <option>Descending</option>
 </select>
</form>

 </td></tr>
 <tr><td>

<div id="result_area">Select ordering...</div>
 </td></tr>
 </table>
</body>
</html>

File: “step4.php” Output

Adding some AJAX – ajaxdemo.js

File: “ajaxdemo.js”

var http = createRequestObject();

/* Function called to get the product categories list */
function getItems() {

http.open('get', 'worker.php?action=get_rows&id=' + document.form_select.order_select.selectedIndex);
http.onreadystatechange = handler_1;
http.send(null);

}

/* Function called to handle the list that was returned from the worker.php file.. */
function handler_1(){

if(http.readyState == 4) { //Finished loading the response
var response = http.responseText;
document.getElementById('result_area').innerHTML = response;

}
}

Adding some AJAX – worker.php

File: “worker.php”

<?
if($_GET['action'] == 'get_rows') {
 switch($_GET['id']) {
 case 0: // Ascending

echo ' <table>
 <tr bgcolor=“#cccc33”><td>Row 1</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 2</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 3</td></tr>
 </table>';
break;

 case 1: // Decending
echo ' <table>
 <tr bgcolor=“#cccc33”><td>Row 3</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 2</td></tr>
 <tr bgcolor=“#cccc33”><td>Row 1</td></tr>
 </table>';
break;

 default:
 echo 'You didn\'t select an item from above!';
 break;
 }
}
?>

Combining it all

 Use HTML/CSS to generate the basic page layouts

 Use embedded PHP to customize pages or to generate dynamic content

 Use JavaScript to enhance the user interface, making it responsive
– Visual feedback, tool tips, etc.
– Basic input validation
– Partial screen updates

 Use PHP “worker pages” to respond to AJAX requests from the browser
– Deep input validation
– Data-driven screen updates

 Example 5 is the same as example 4, with only 'worker.php' changed

Adding some AJAX – a db driven worker

File: “worker2.php”

<?php
if($_GET['action'] == 'get_rows') {

 if($_GET['id']==0) {
$qry = "select id from demo order by 1 ascending";

 } else {
$qry = "select id from demo order by 1 descending";

 }

 $db = fbird_pconnect("localhost:c:\phpdemo.fdb", "sysdba","masterkey");
 $rs = fbird_query($db, $qry);

 echo '<table>';
 while($rw = fbird_fetch_row($rs)) {
 echo '<tr bgcolor=“#cccc33”>';
 echo '<td>'.$rw[0].'</td></tr>';
 }
 echo '</table>';

 fbird_free_result($rs);
 fbird_close($db);
}
?>

Topics

 What is LAMP?

 A short history of LAMP and AJAX

 PHP and AJAX in action

 LAMP and Firebird: what can you do with it?

 What’s next?

Opportunity 1: use for a “web application”

 PHPServer can be used to run any PHP
application. Many good quality applications are
available as open source:

 Some examples are:
– SugarCRM
– PHProjekt
– phpBB
– Hundreds more!

 Sometimes historical dependence on MySQL, but
increasing shift to independence or support for
multiple databases:

– Firebird
– Oracle -> Fyracle

 Or you can code your own. A few pages of PHP is
often enough for a simple application

Win / Lin

MyServer

PHP5

Modern
browser

intranet

Firebird

Example:

PHProjekt

Example: PHProjekt

 Large corporations use elaborate groupware systems. The two leading choices are:
– Microsoft (Exchange, Outlook): 150 mln ‘seats’
– IBM (Notes): 120 mln ‘seats’
Both are nice, but expensive

 PHProjekt is a good alternative for medium sized organisations
– Already used in hundreds of organisations
– Typical deployment 20..50 ‘seats’, ranging up to hundreds
– Used by the city of Munich

 PHProjekt supports Firebird ‘out-of-the-box’

Opportunity 2: use as web service app server

 Currently “web services” and “server oriented
architectures (SOA)” are big buzzwords

 Breaking up software systems into modules with
specific functionality, which can be locally or
remotely accessed not a bad idea

 Currently promoted implementation style is SOAP
and WDSL, but XML-RPC remains popular

– SOAP & WDSL promoted by “big IT”
– XML-RPC simpler, effective technology

 PHPServer is a good basis to build your web
services and SOA’s

– PHP5 has native support for SOAP/WDSL
– Safe, efficient & easy to manage Firebird

data store

Win / Lin

MyServer

PHP5

Internet/
intranet

Firebird

Handles SOAP and WSDL
Handles XML processing

Handles http protocol,
virtual domains, etc.

Handles data, integrity,
Backup, etc.

Opportunity 3: use as “XML database”

 PHPServer can be used to provide XML database
type functionality to Firebird

 A small PHP program can be used as a pre-
processor to handle XQuery and XPath requests.

– This may sound strange, but the first
implementations of dynamic SQL for Firebird
worked just the same back in the late 80’s

– PHP has good XML processing libraries

 XML documents can be decomposed into
documents, elements and attributes

– Any XML document can be stored this way in
a fixed small set of tables

– Original document can be stored in separate
blob for legal purposes (keep MD5 sum)

 Firebird Fyracle’s hierarchical query capability
handy for retrieving nested element sets in a
single passWin / Lin

MyServer

PHP5

Internet/
intranet

Firebird

Translates XQuery, XPath,
Composes and decomposes
XML documents into parts

Handles wire protocol
and client management

Stores XML documents in
relational format

XML-Relational mapping to 3 core tables

Documents Elements Attributes
contains

is part of

is part of

contains

Use Fyracle or Firebird 3
hierarchical queries to

efficiently retrieve nested
element sets

Topics

 What is LAMP?

 A short history of LAMP and AJAX

 PHP and AJAX in action

 LAMP and Firebird: what can you do with it?

 What’s next?

What is the problem of LAMP/AJAX?

HTML/CSS PHP (SQL)

JavaScript
(XML)

 The LAMP model is not as easy as it once was
and combines several languages/technologies:

– HTML/CSS
– PHP (often containing SQL)
– JavaScript (often handling XML data)

 Lots of scope for unmaintainable code:
– Mixed code snippets
– Unrelated snippets in a single file
– One bit of functionality spread out over

several files

 Requires experienced developers to get right

Solution 1: clean up the mess

 In the last year a few libraries have become
popular that separate the various elements into
maintainable units

 The HTML and PHP code can be separated more
by using “templating engines”. A popular choice is
“Smarty”.

 The JavaScript code, especially the AJAX part,
can be moved into a framework library. A popular
choice is CPAINT.

 Raw PHP is used for worker pages. The object
orientation of PHP5 enables proper layering of this
code.

 Using this route makes the code more
maintainable, but…

 …the demands on the experience of the developer
are even bigger, with two more frameworks to
learn

OS

webserver

PHP
core

Modern
browser

internet

database

“Smarty”
templates

“CPAINT”
javascript lib

Solution 2: swap out PHP

 In the last 10 years nearly every component in
David Hughes’ original LAMP-stack got changed

– From Unix to Linux to any OS
– From mSQL to MySQL to any database
– From Mosaic to Apache to any webserver
– From Mosaic to Netscape to any browser
– From Lite to Perl to PHP to …?

 Morfik is an IDE and a compiler for the LAMP
application server:

– GUI design of user interfaces
– One development language for all code

(pick from Delphi, VB, C# and Java)
– Compiler generates

• HTML/CSS
• JavaScript
• “worker pages”

from this input, handling all complexity
OS

webserver

Modern
browser

internet

database

e.g. Morfik

